

Table of Contents

Preface (9-22)

- Introduction
- What is RF
- Wavelength and Waves
- RF History

Chapter 1 – Electromagnetic Theory (23 - 79)

- The Goal for Electromagnetic Theory in RF
- Vector Calculus Tools
- Maxwell's Equations
 - The Six Assumptions
 - Deriving the Wave Equation/Helmholtz Solution for the Electric Field
- Plane Wave Parameters
 - Phase Velocity
 - Wave Impedance
 - Phase Constant/Wave Number
 - Attenuation Constant
 - Propagation Constant
 - Skin Depth
 - Surface Resistivity
- Plane Waves in Different Media
 - Plane Waves in Lossless Media
 - Plane Waves in General Lossy Media
 - Plane Waves in Conductive Media
- Plane Waves Parameters Examples
 - Example 1) Lossless Media
 - Example 2) General Lossy Media (Rogers Duroid 5880)
 - Example 3) Good Conductive Media (Copper)
 - Example 4) Example Comparison and Takeaways
- End of Chapter Problems – Chapter 1

Chapter 2 – Transmission Line Theory (80 - 151)

- Transmission Line Theory
- Circuit Models for Transmission Lines
- The Imaginary RF Probe
- The Lossy Transmission Line and the Telegrapher Equations
- Characteristic Impedance
- The Lossless Transmission Line
- The Terminated Lossless Transmission Line

- Load Impedance-Matching
- Reflection Coefficient
 - Special Case 1: Perfectly Matched Circuit
 - Special Case 2: Short Circuit
 - Special Case 3: Open Circuit
- Return Loss
 - Special Case 1: Perfectly Matched Circuit
 - Special Case 2: Short Circuit
 - Special Case 3: Open Circuit
- VSWR
- Input Impedance
 - Special Case 1: Line Length of Zero
 - Special Case 2: Matched Load
 - Special Case 3: Open Circuit Load
 - Special Case 4: Short Circuit Load
 - Special Case 5: Quarter Wavelength Line
 - Special Case 6: Half Wavelength Line
- Transmission Coefficient
- Insertion Loss
- End of Chapter Problems – Chapter 2

Chapter 3 – Superposition, Guided Waves, and Planar Geometries (152 - 175)

- Superposition, Boundary Conditions, and Modes
- Guided Waves and Planar Geometries
 - Stripline
 - Stripline Parameters Example
 - Microstrip
 - Microstrip Parameters Example
 - Stripline vs. Microstrip
 - Stripline vs Microstrip Parameters Comparison
- End of Chapter Problems – Chapter 3

Chapter 4 – Impedance Matching Networks (176 - 234)

- What is Impedance Matching
- The Smith Chart
- Important Smith Chart Areas and Important Plots
- Basic Smith Chart Plotting and Information
 - Smith Chart Plotting Examples
- L-Networks
 - Low Pass Configuration
 - High Pass Configuration
 - Low Pass Example
 - High Pass Example
- Stub Networks
- Quarter Wave Transformer

- The Complex Plane, Rectangular/Polar Form, and Geometrical Relations
- Open Stub Tuning
 - Open Stub Tuning Example
- Quarter Wave Transformer
 - Purely Real Impedance Example
 - Complex Impedance Example
- End of Chapter Problems – Chapter 4

Chapter 5 – Network Analysis, Scattering Parameters, and RF Measurements (235 - 308)

- Network Analysis
- ASLOTI
- Kurokawa's Power Waves
- Return Loss, Insertion Loss, and the Confusion that Arises with S-Parameters
- S-Parameters and Port Expansion
 - 1-Port Network
 - 2-Port Network
 - 3-Port Network
 - 4-Port Network
- Reciprocal and Non Reciprocal Circuits
- Measuring RF Circuits via S-Parameters
- The Vector Network Analyzer
 - State Files
 - Frequency Range
 - Number of Points
 - IFBW
 - Averaging
 - Formatting
 - Scaling
 - Reference Level
 - Calibration and the De-Embedded Measurement Plane
 - Smith Chart Format for S-Parameters
 - One Port Measurements
 - LC Series Stub
 - Yagi Microstrip Antenna
 - Two Port Measurements
 - 30MHz Lowpass Filter
 - 2.4GHz Bandpass Filter
 - 100MHz High Pass Filter
 - 5dB Attenuator
 - 10dB Attenuator
 - Extracting and Analyzing Data in MATLAB
 - Extracting Touchstone Scattering Parameter Data
- End of Chapter Problems – Chapter 5

Chapter 6 – From Theory to Practice (309 - 329)

- One Big Design Problem
 - Step 0: Problem Setup
 - Step 1: Calculate Microstrip Width
 - Step 2: Normalize the Antenna Impedance
 - Step 3: Plot on the Smith Chart
 - Step 4: Transmission Line Rotation
 - Step 5: Determine Stub Admittance
 - Step 6: Calculate Open Circuit Stub Length
 - Step 7: RF Simulation
 - Step 8: Network Analysis and Port Expansion
 - Step 9: State File Setup
 - Step 10: Network Analyzer Calibration and Verification
 - Step 11: Analyzing and Plotting Measurement Data
 - Step 12: Take a Moment to Reflect

Chapter 7 – The Future of RF (330 - 334)

- The Future of RF
- RF and Quantum Systems
- Adaptive Antenna Systems
- Measurement Limits
- The Road to 6G
- RF Photonics
- Metamaterials and Engineered Electromagnetic Media
- Conclusion

Epilogue (335 - 336)

Bibliography (337 - 339)

About the Author (340)