
Transmission Line Theory

Before we jump into transmission lines, we need to make an 
important connection. In Chapter 1, everything we talked about 
lived in either:

- Free Space
- Uniform Materials

Waves spread out, fill space, and follow Maxwell’s equations in their 
full vector form. That’s great for understanding how 
electromagnetic waves behave in the wild, but that’s not how real RF 
systems move energy from point A to point B. Real RF hardware 
doesn’t let waves float around in space. They are guided. To picture 
this guided wave for a transmission line (a structure that carries 
high-frequency electrical signals from one point to another without 
losing too much energy and/or distorting the signal), imagine yelling 
into a canyon versus yelling into a tube. In a canyon, your voice 
spreads out quickly and attenuates rapidly over distance. In a tube, 
your voice travels further and stays intact. The transmission line is 
like that pipe - it contains and guides the electromagnetic wave, 
preventing it from leaking or reflecting unpredictably

The moment you introduce two conductors, the electromagnetic 
fields are no longer free to do whatever they want. The metal 
surfaces impose boundary conditions that trap the fields in a very 
specific way. The result is a guided wave - an electromagnetic wave 
that is forced to follow a path defined entirely by the geometry of  
the conductors.

What we call “voltage” and “current” on a transmission line are just 
the electromagnetic fields expressed in circuit language.

The electric field between the conductors becomes voltage.



The magnetic field wrapping around the conductors becomes 
current.

The Poynting vector - the flow of  electromagnetic energy - flows 
down the line.

So even though transmission lines look like a circuit-theory object, 
everything happening on them is still pure Maxwell under the hood. 
In fact, the Telegrapher’s Equations we’re about to derive come 
directly from Maxwell’s equations applied to this guided structure. 
They are simply Maxwell’s equations in a one-dimensional, 
engineering-friendly form.

Circuit Models for Transmission Lines

Let’s go back to the topic of  wavelength. As mentioned before, the 
wavelength for signals in analogue devices is massive and enables us 
to treat each element (resistor, capacitor, or inductor) as lumped 
elements. At radio frequencies, this electrical length is really small, so 
we have to treat the element as a distributed element.

Let’s pause. What’s a lumped element? What’s a distributed element? 
Why do we have to treat high frequency signals as distributed 
elements instead of  lumped elements? What’s going on here?

In analogue electrical circuits where the boundary is set by the 
electrical wavelength relative to wavelength, lumped elements are 
idealized components like resistors, capacitors, and inductors that 
we assume are concentrated at a single point in space - they don’t 
take up electrical space in the circuit in terms of  their electrical 
behavior since the wavelength is so large. This doesn’t mean that 
one of  these components doesn’t take up space on a circuit board. 
Of  course it does! But as far as the signal itself  is concerned, these 
elements don’t take up any space at all. If  the signal wavelength is 



much larger than the components size (say a capacitor 3mm long), 
the entire signal “sees” the component at one instant in time. For 
example, say you have a wavelength of  30 kilometers - a very big 
wave. For a 3mm capacitor, it appears extraordinarily small 
compared to the 30km wave - the physical size of  the component is 
much smaller than the wavelength of  the signal it’s handling. 
Technically speaking, the capacitor takes up 0.00001% of  the 
wavelength. The physical length of  the 3mm capacitor is negligible 
compared to the 30km wave. At these lower frequencies, we can 
lump all of  these components together to determine a certain 
electrical output since they appear so small compared to the signals’ 
wavelength. This is why they are called lumped elements.

At high frequencies, the lumped element model starts to break 
down. Capacitors start to radiate or act like an antenna, a wire 
behaves like an inductor or transmission line, and parasitics (stray 
inductance and capacitance) become significant. This is when we 
need to use distributed elements. Let’s take the same 3mm capacitor, 
but instead of  a 30km wave, the wave is 30mm - much smaller. 
When comparing the 3mm capacitor to the 30mm wave, the 
capacitor is 10% of  the wavelength. Now, the physical length of  the 
3mm capacitor must be taken into consideration. It’s not nothing. 
The circuit is no longer a collection of  “points” connected by “ideal 
wires.” Instead, it’s a structure - where geometry, spacing, and 
material all influence the behavior of  the signal.

In short:

At low frequencies, components are points.

At high frequencies, components are paths



This shift is why RF and microwave engineers think of  distributed 
structures - they draw filters, transformers, and matching networks 
with shapes and segments of  line, not just RLC components.

The electrical length for microwave devices proves to be quite small 
and forces the designer to treat each element as a distributed 
element. In a microwave circuit, the elements are distributed in a 
certain way (over distance) to determine the voltage and current 
over various points in the circuit to determine the output. In terms 
of  voltages and current for analogue signals, the amplitude and 
phase of  the voltage and current do not vary too much over the 
length of  the circuit, but in terms of  voltages and current for 
microwave signals, the voltage and current amplitude and phase 
change over the distance of  the circuit. 

The Imaginary RF Probe

Let’s compare a 1kHz analogue signal and 10GHz microwave signal 
- similar to what we did in Chapter 1, but this time, let’s probe the 
circuit and its respective signal with an imaginary RF probe to 
determine the voltage at points along the circuit in a time snapshot. I 
say this is an imaginary RF probe, because this is not a proper or 
valid way to measure RF circuits. This is more of  an exercise to 
illustrate why microwave signals are different than analogue/low 
frequency signals in terms of  a circuit representation.

Let’s look at the same 1kHz and 10GHz wave in Chapter 1:



10GHz vs. 1kHz Wave

The below signal represents the 1kHz analogue signal and the above 
signal represents the 10GHz microwave signal. 

The y-axis is the real voltage amplitude and on the x-axis, the length 
of  the circuit circuit. Let’s say the length of  the circuit is 0.25 meters 
long. If  I were to take an imaginary radio frequency probe and 
probe any point on the circuit (.05m, 0.1cm, 0.2m, etc.), I would get 
a constant voltage readout of  0V at all points due to the amplitude 
and phase remaining constant across the distance of  the circuit at 
one fixed moment in time. Similarly, if  I were to take the same 
imaginary RF probe and probe the voltage of  the microwave signal 
at various points on the circuit at one fixed moment in time, I would 
not get a constant voltage readout. If  I probed the circuit at .05m, I 
would get a voltage readout of  around -0.8V. If  I probed the circuit 
at 0.25cm, the voltage readout would be around 0.9V.

This means the circuit parameters for the microwave signal 
(resistance, inductance, capacitance, and conductance) need to be 
represented in terms of  distance. Resistance in analogue units is in 
terms of  ohms, but for microwave units, it’s in ohms/meter. 
Inductance in analogue units is in terms of  henry’s, but for 



microwave units, it’s in henry’s/meter. Conductance in analogue 
units is in terms of  siemens, but for microwave units, it’s in 
siemens/meter. Capacitance in analogue units is in terms of  
faraday’s, but for microwave units, it’s in faraday’s/meter. 

In a lumped microwave schematic, each element is represented in 
terms of  a change in distance Δz. Similarly, the voltage and current 
vary with a change in distance Δz which is why Δz is added to the 
varying voltage and current definitions at the output of  the circuit. 
Looking at the circuit elements a little further shows that RΔz is the 
resistance due to the conductivity between the two conductors, LΔz 
represents the inductance of  the two conductors, shunt 
conductance GΔz represents the dielectric loss between the two 
conductors, and shunt capacitance CΔz is the capacitance between 
these two conductors.

2.1 The Lossy Transmission Line and the Telegrapher 
Equations

Wave propagation for voltages and currents are defined by 
performing Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage 
Law (KVL on the components of  the lumped model equivalent of  
the transmission line. These solutions will then pave the way to 
deriving the traveling wave solutions of  lossless transmission lines. 
We won’t perform KCL/KVL, but what is important is why we 
perform KCL/KVL on any circuit - particularly RF circuits. To 
start, it helps derive the telegrapher equations, which are fundamental to 
understanding wave behavior in transmission lines. The lumped 
model above divides a transmission line into small segments, each 
with series impedance and shunt admittance.

Series resistance (RΔz) and inductance (LΔz) model energy loss and 
magnetic field storage.



Shunt conductance (GΔz) and capacitance (CΔz) model leakage and 
electric field storage

After performing KCL and KVL the sinusoidal steady-state 
condition can be derived from the time domain solution output of  
KCL on the distributed circuit. 

By simplifying the time domain solution output, the telegrapher 
equations are formally derived and defined in the frequency domain:

    dV ( z )
dz

=-(R+ j ω L )  I ( z )      (2.1.01)

    dI ( z )
dz

=-(G+ j ωC )  V ( z )      (2.1.02)

Let’s break down each of  these equations to understand what 
they’re describing.

The first equation describes how voltage changes along the line 
based on the current and the line’s resistance, R, and inductance, L.

The R term accounts for energy loss (like heat) as current flows.

The j ω L term accounts for the magnetic field buildup due to 
inductance

In plain speak, if  current is flowing through a long, lossy wire, the 
voltage will drop as you move along the wire due to the resistive 
losses (energy loss) and inductive impedance (stored but reactive 
energy).

The second equation describes how current changes along the line 
based on the voltage and the lines conductance, G, and capacitance, 
C.



The term, G, models leakage through the dielectric (current leaking 
from wire to ground)

The j ωC  models electric field storage (capacitive effect between 
conductors)

If  voltage exists between two conductors, you get a charging effect - 
more voltage leads to more current flowing, not necessarily forward, 
but due to the displacement current (capacitive charging) and 
leakage.

Now, let’s look at the big picture. Imagine a garden hose as your 
transmission line.

Voltage is “like pressure”

Current is like “water flow”. Not in the sense where electrons move 
from point A to point B, but in the sense the flow is associated with 
a traveling pressure wave. 

Inductance is like the hose resisting rapid changes in flow (inertia)
Capacitance is like the hose elastically storing pressure energy – 
similar to a balloon segment that compresses and releases.
Resistance and conductance are like leaks in the hose - they dissipate 
energy.

As with all analogies, this model is really intended to build intuition – 
something we will constantly try to build upon throughout the 
book. Imagining these waves alone without some sort of  intuition 
and purely mathematical reasoning is extraordinarily difficult to do 
off  the rip. Hence, this is where some analogies come into play. For 
this one in particular, it should not be interpreted as a literal 
description of  electron motion.



Solving the Telegrapher equations simultaneously gives you the 
voltage and current wave equations. Now, instead of  electric and 
magnetic field wave equations which were covered in Chapter 1, 
these equations describe how voltage and current propagate as 
waves along a transmission line.

Let’s simultaneously solve these equations to achieve the voltage and 
current wave equation. First, begin with the voltage equation and 
partially differentiate with respect to z.

dV ( z )
dz

=-(R+ j ω L )  I ( z )

d2V ( z )
d z2 =-(R+ j ω L )  

dI ( z )
dz

Going back to the current equation, we actually know what 
dI ( z )
dz

 

is equal to. Let’s plug the current equation into the now 2nd order 
differential equation for voltage. This is what it means to 
simultaneously solve these equations. You use one equation to solve 
for the other - very standard practice for deriving equations such as 
these.

dI ( z )
dz

=-(G+ j ωC )  V ( z )

d2V ( z )
d z2 =-(R+ j ω L)  

dI ( z )
dz

d2V ( z )
d z2 =-(R+ j ω L )  [(-(G+ j ωC )  V ( z ))]

d2V ( z )
d z2 =(R+ j ω L)(G+ j ωC )  V ( z )



Similar to our electric field equation where permittivity and 
permeability define the propagation constant, so does a lossy 
transmission line with delta resistance, inductance, capacitance, and 
conductance.

γ2 =(R+ j ω L )(G+ j ωC )
γ =√(R+ j ω L )(G+ j ωC )

Very similar to when we solved for the propagation constant in 
Chapter 1 and plugged back into the equation.

d2V ( z )
d z2 =(R+ j ω L )(G+ j ωC )  V ( z )

d2V ( z )
d z2 = γ2V ( z )  

d2V ( z )
d z2 -  γ2  V ( z )=0  

This should look VERY familiar if  you have been following the 
derivations closely. This is another second-order differential 
equation! This equation specifically is the second order differential 
equation for a lossy transmission line.

Now, let’s solve for the current wave equation using similar steps to 
solve the voltage wave equation. First, start with the current 
equation derived from KCL on the lumped transmission line circuit 
model and differentiate both sides with respect to z.

dI ( z )
dz

=-(G+ j ωC )  V ( z )

d2 I ( z )
d z2 =-(G+ j ωC )

dV ( z )
dz



Once again, we know what 
dV ( z )
dz

 is equal to, so let’s plug that back 

into the above equation to simplify further.

d2 I ( z )
d z2 =-(G+ j ωC )

dV ( z )
dz

dV ( z )
dz

=-(R+ j ω L )  I ( z )

d2 I ( z )
d z2 =-(G+ j ωC )[( -(R+ j ω L)  I ( z ))]

d2 I ( z )
d z2 =(R+ j ω L )(G+ j ωC )  I ( z )

Since we have already established what the propagation constant is, 
let’s substitute the constant again to find the current wave equation 
for a transmission line.

d2 I ( z )
d z2 =(R+ j ω L)(G+ j ωC )  I ( z )

d2 I ( z )
d z2 = γ2  I ( z )

d2 I ( z )
d z2 - γ2  I ( z )=0

After derivation, the voltage and current equations are given as:

      d
2V ( z )
d z2 -  γ2  V ( z )=0       (2.1.03)

        d
2 I ( z )
d z2 - γ2  I ( z )=0      (2.1.04)



If  you’ve been paying attention so far, the general equations should 
seem obvious. Very similar to the general solution of  the plane wave 
electric field wave equation, the general solution of  the voltage and 
current wave equations follows suit in the following manner:

        V ( z )=V o
+e- γ z+V o

-e  + γ z         (2.1.05)

       I ( z )= I o
+e- γ z+ I o

-e  + γ z         (2.1.06)

The first equation represents a voltage wave traveling in both 

directions (-z and +z). The first term, V o
+e- γ z, represents the 

voltage wave traveling in the positive z-direction (a forward voltage 

traveling wave) and the second term, V o
-e+ γ z, represents the voltage 

wave traveling in the negative z-direction (a reverse voltage traveling 
wave). Since this overall voltage wave is propagating on a lossy 
transmission line, the forward and reverse voltage waves will decay 
as they propagate due to the attenuation constant, αz. Remember, 
for lossy media including transmission lines, the propagation 
constant is not purely real.

Unless you’re extraordinarily gifted at visualizing the obscure 
phenomena of  wave propagation (in this case, voltage and current), 
it might be helpful describing these general solutions with intuitive 
examples as we’ve been doing so far. Hopefully, most people can 
relate to doing this when they were a kid - either with a rope, a 
chain, or a piece of  string.

Imagine you’re at a beach with a ten foot rope tied to a post and you 
give the rope a singular snap. This snap can be thought of  as the 
source of  the signal. As the rope “wave” travels to the post, the 
crest (amplitude) gets smaller. This forward traveling wave to the 

post represents V o
+e- γ z - a forward traveling voltage wave. 

Attenuation, which is part of  the complex propagation constant, γ , 
causes the wave to become smaller as it approaches the post if  the 



rope has friction. Now, as soon as that rope “wave” hits the post, it 
will reflect off  the post, come back, and will also get smaller as it 
travels back towards your hand. This reflected traveling rope wave 

represents  V o
- e+ γ z and similar to the forward traveling rope 

“wave”, attenuation causes the amplitude/crest of  the wave to 
decay.

Once again, make note that the propagation constant, γ, is utilized 
instead of  β (or k for lossless transmission lines). This is because the 
complex propagation constant is defined as γ in lossy mediums (as 
mentioned before with plane waves and guided waves).

We have so far defined the traveling wave equations of  Fig. b) by 
incorporating the resistance, inductance, conductance, and 
capacitance of  the lumped model. The traveling wave solutions to 
these equations can be written as:

Notice the close similarity between these sets of  general solutions 
for propagation:

Voltage and Current Traveling Wave:

    V ( z )=V o
+e- γ z+V o

- e  + γ z 
     I ( z )= I o

+e- γ z+ I o
- e  + γ z 

Electric Field Traveling Plane Wave

E ( z )=Eo
+e- γ z+Eo

-e+ γ z

Noticing the stark similarities between these two sets of  equations is 
extremely important, because this is essentially the beginning of  
merging field theory and circuit theory for radio frequencies. For the 
voltage and current traveling waves, the propagation constant γ is 



complex due to the lossy nature of  the medium. Instead of  an 
electric field plane wave propagating in the z-directions, we have 
voltage and current waves propagating in the z-directions. The 
voltage and current traveling waves include inductance, resistance, 
capacitance, and conductance 
components which are defined by the complex propagation 
constant γ. 

While Maxwell’s equations give rise to electric and magnetic field 
plane waves propagating in the z-direction, an analogous concept in 
circuit theory emerges: voltage and current waves propagating along 
the same direction. As denoted before, we can deduce that the e- γz 
term represents the traveling wave propagating in the forward +z 
direction and the e+ γz term represents  the traveling wave 
propagating in the opposite -z direction for both the voltage and 
current waves.

The reader might be thinking, “Okay, we have voltage, we have 
current, what about impedance in terms of  these waves?” This leads 
us to one of  the most fundamental concepts in RF engineering and 
design: characteristic impedance. It is defined as the ratio of  the 
amplitude of  the voltage wave to the amplitude of  the current wave 
on a transmission line. In practice, this is often treated as a real 
constant-typically 50Ω - because the losses are assumed to be 
minimal, making the imaginary components negligible.

To better describe characteristic impedance, let’s go back to the 
intuitive example with water flowing in a pipe. Now, let’s grab a 
piston and put it on one end of  the pipe and give it a singular pump. 
As mentioned before:

Voltage is “like pressure”



Current is like “water flow”. Not in the sense where electrons move 
from point A to point B, but in the sense the flow s associated with 
a traveling pressure wave. 

Characteristic impedance = how much pressure (voltage) is needed 
to get a certain flow rate (current) for a traveling wave in a uniform 
pipe.

Suppose the pipe goes on forever and is completely uniform on the 
inside. When you push the piston, the pressure wave travels down 
the pipe and the water flows. The relationship between how hard 
you have to push (pressure = voltage) and the amplitude of  the flow 
associated with the traveling pressure wave (flow = current) depends 
only on the pipe’s properties - its diameter, stiffness, and the 
viscosity of  the water.

To be more technical for my RF Engineering readers out there:

Voltage is the electric potential difference between conductors

Current is the motion of  charge in the conductors that accompanies a 
propagating electromagnetic wave.

The characteristic impedance is the pressure-to-flow ratio of  a 
traveling wave in a uniform line.

Consider this: imagine your goal is to get all the water to propagate 
smoothly to one end of  a pipe. Sounds simple enough. If  the pipe is 
uniform, the water flows without issue.

But now imagine that near the end, the pipe narrows or you partially 
close it off. What happens? Some of  the water still flows through, 
but part of  the wave reflects and comes back toward the source. 
This reflected wave disrupts the steady movement of  water and 
causes interference or turbulence in the pipe.



This is exactly what happens in an electrical transmission line when 
the impedance changes at the load. A mismatch causes part of  the 
voltage and current wave to reflect, which interferes with the 
forward wave - just like the backward flow of  water in the pipe.


