Transmission Line Theory

Before we jump into transmission lines, we need to make an
important connection. In Chapter 1, everything we talked about
lived in either:

- Free Space
- Uniform Materials

Waves spread out, fill space, and follow Maxwell’s equations in their
full vector form. That’s great for understanding how
electromagnetic waves behave in the wild, but that’s not how real RF
systems move energy from point A to point B. Real RF hardware
doesn’t let waves float around in space. They are guided. To picture
this guided wave for a transmission line (a structure that carries
high-frequency electrical signals from one point to another without
losing too much energy and/or distorting the signal), imagine yelling
into a canyon versus yelling into a tube. In a canyon, your voice
spreads out quickly and attenuates rapidly over distance. In a tube,
your voice travels further and stays intact. The transmission line is
like that pipe - it contains and guides the electromagnetic wave,
preventing it from leaking or reflecting unpredictably

The moment you introduce two conductors, the electromagnetic
fields are no longer free to do whatever they want. The metal
surfaces impose boundary conditions that trap the fields in a very
specific way. The result is a guided wave - an electromagnetic wave
that is forced to follow a path defined entirely by the geometry of
the conductors.

What we call “voltage” and “current” on a transmission line are just
the electromagnetic fields expressed in circuit language.

The electric field between the conductors becomes voltage.



The magnetic field wrapping around the conductors becomes

current.

The Poynting vector - the flow of electromagnetic energy - flows
down the line.

So even though transmission lines look like a circuit-theory object,
everything happening on them is still pure Maxwell under the hood.
In fact, the Telegrapher’s Equations we’re about to derive come
directly from Maxwell’s equations applied to this guided structure.
They are simply Maxwell’s equations in a one-dimensional,
engineering-friendly form.

Circuit Models for Transmission Lines

Let’s go back to the topic of wavelength. As mentioned before, the
wavelength for signals in analogue devices is massive and enables us
to treat each element (resistor, capacitor, or inductor) as lumped
elements. At radio frequencies, this electrical length is really small, so
we have to treat the element as a distributed element.

Let’s pause. What’s a lumped element? What’s a distributed element?
Why do we have to treat high frequency signals as distributed
elements instead of lumped elements? What’s going on here?

In analogue electrical circuits where the boundary is set by the
electrical wavelength relative to wavelength, lumped elements are
idealized components like resistors, capacitors, and inductors that
we assume are concentrated at a single point in space - they don’t
take up electrical space in the circuit in terms of their electrical
behavior since the wavelength is so large. This doesn’t mean that
one of these components doesn’t take up space on a circuit board.
Of course it does! But as far as the signal itself is concerned, these
elements don’t take up any space at all. If the signal wavelength is



much larger than the components size (say a capacitor 3mm long),
the entire signal “sees” the component at one instant in time. For
example, say you have a wavelength of 30 kilometers - a very big
wave. For a 3mm capacitor, it appears extraordinarily small
compared to the 30km wave - the physical size of the component is
much smaller than the wavelength of the signal it’s handling;
Technically speaking, the capacitor takes up 0.00001% of the
wavelength. The physical length of the 3mm capacitor is negligible
compared to the 30km wave. At these lower frequencies, we can
lump all of these components together to determine a certain
electrical output since they appear so small compared to the signals’
wavelength. This is why they are called Zumped elements.

At high frequencies, the lumped element model starts to break
down. Capacitors start to radiate or act like an antenna, a wire
behaves like an inductor or transmission line, and parasitics (stray
inductance and capacitance) become significant. This is when we
need to use distributed elements. Let’s take the same 3mm capacitor,
but instead of a 30km wave, the wave is 30mm - much smaller.
When comparing the 3mm capacitor to the 30mm wave, the
capacitor is 10% of the wavelength. Now, the physical length of the
3mm capacitor must be taken into consideration. It’s not nothing;
The circuit is no longer a collection of “points” connected by “ideal
wires.” Instead, it’s a structure - where geometry, spacing, and
material all influence the behavior of the signal.

In short:
At low frequencies, components are points.

At high frequencies, components are paths



This shift is why RF and microwave engineers think of distributed
structures - they draw filters, transformers, and matching networks
with shapes and segments of line, not just RLC components.

The electrical length for microwave devices proves to be quite small
and forces the designer to treat each element as a distributed
element. In a2 microwave circuit, the elements are distributed in a
certain way (over distance) to determine the voltage and current
over various points in the circuit to determine the output. In terms
of voltages and current for analogue signals, the amplitude and
phase of the voltage and current do not vary too much over the
length of the circuit, but in terms of voltages and current for
microwave signals, the voltage and current amplitude and phase
change over the distance of the circuit.

The Imaginary RF Probe

Let’s compare a 1kHz analogue signal and 10GHz microwave signal
- similar to what we did in Chapter 1, but this time, let’s probe the
circuit and its respective signal with an imaginary RF probe to
determine the voltage at points a/ong the circuit in a time snapshot. I
say this is an imaginary RF probe, because this is not a proper or
valid way to measure RF circuits. This is more of an exercise to
illustrate why microwave signals are different than analogue/low
frequency signals in terms of a circuit representation.

Let’s look at the same 1kHz and 10GHz wave in Chapter 1:
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10GHz vs. 1RHz Wave

The below signal represents the 1kHz analogue signal and the above
signal represents the 10GHz microwave signal.

The y-axis is the real voltage amplitude and on the x-axis, the length
of the circuit circuit. Let’s say the length of the circuit is 0.25 meters
long, If I were to take an imaginary radio frequency probe and
probe any point on the circuit (.05m, 0.1cm, 0.2m, etc.), I would get
a constant voltage readout of 0V at all points due to the amplitude
and phase remaining constant across the distance of the circuit at
one fixed moment in time. Similarly, if I were to take the same
imaginary RF probe and probe the voltage of the microwave signal
at various points on the circuit at one fixed moment in time, I would
not get a constant voltage readout. If I probed the circuit at .05m, I
would get a voltage readout of around -0.8V. If I probed the circuit
at 0.25cm, the voltage readout would be around 0.9V.

This means the circuit parameters for the microwave signal
(resistance, inductance, capacitance, and conductance) need to be
represented in terms of distance. Resistance in analogue units is in
terms of ohms, but for microwave units, it’s in ohms/meter.
Inductance in analogue units is in terms of henry’s, but for



microwave units, it’s in henry’s/meter. Conductance in analogue
units is in terms of siemens, but for microwave units, it’s in
siemens/meter. Capacitance in analogue units is in terms of
faraday’s, but for microwave units, it’s in faraday’s/meter.

In a lumped microwave schematic, each element is represented in
terms of a change in distance Az. Similarly, the voltage and current
vary with a change in distance Az which is why Az is added to the
varying voltage and current definitions at the output of the circuit.
Looking at the circuit elements a little further shows that RAz is the
resistance due to the conductivity between the two conductors, LAz
represents the inductance of the two conductors, shunt
conductance GAz represents the dielectric loss between the two
conductors, and shunt capacitance CAz is the capacitance between
these two conductors.

2.1 The Lossy Transmission Line and the Telegrapher
Equations

Wave propagation for voltages and currents are defined by
performing Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage
Law (KVL on the components of the lumped model equivalent of
the transmission line. These solutions will then pave the way to
deriving the traveling wave solutions of lossless transmission lines.
We won’t perform KCL/KVL, but what is important is why we
petform KCL/KVL on any circuit - particulatly RF circuits. To
start, it helps derive the felegrapher equations, which are fundamental to
understanding wave behavior in transmission lines. The lumped
model above divides a transmission line into small segments, each
with series impedance and shunt admittance.

Series resistance (RAz) and inductance (LAz) model energy loss and
magnetic field storage.



Shunt conductance (GAz) and capacitance (CAz) model leakage and
electric field storage

After performing KCL and KVL the sinusoidal steady-state
condition can be derived from the time domain solution output of
KCL on the distributed circuit.

By simplifying the time domain solution output, the telegrapher
equations are formally derived and defined in the frequency domain:

d
‘;iz):-(mij) I(z) (2.1.01)
dId(ZZ):-(G+ij) V(z) (2.1.02)

Let’s break down each of these equations to understand what
they’re describing,

The first equation describes how voltage changes along the line
based on the current and the line’s resistance, R, and inductance, L.

The R term accounts for energy loss (like heat) as current flows.

The jw L term accounts for the magnetic field buildup due to

inductance

In plain speak, if current is flowing through a long, lossy wire, the
voltage will drop as you move along the wire due to the resistive
losses (energy loss) and inductive impedance (stored but reactive

energy).

The second equation describes how current changes along the line
based on the voltage and the lines conductance, G, and capacitance,

C.



The term, G, models leakage through the dielectric (current leaking
from wire to ground)

The j C models electric field storage (capacitive effect between
conductors)

If voltage exists between two conductors, you get a charging effect -
more voltage leads to more current flowing, not necessarily forward,
but due to the displacement current (capacitive charging) and
leakage.

Now, let’s look at the big picture. Imagine a garden hose as your

transmission line.
Voltage is “like pressure”

Current is like “water flow”. Not in the sense where electrons move
from point A to point B, but in the sense the flow is associated with

a traveling pressure wave.

Inductance is like the hose resisting rapid changes in flow (inertia)
Capacitance is like the hose elastically storing pressure energy —
similar to a balloon segment that compresses and releases.
Resistance and conductance are like leaks in the hose - they dissipate

energy.

As with all analogies, this model is really intended to build zntuition —
something we will constantly try to build upon throughout the
book. Imagining these waves alone without some sort of intuition
and purely mathematical reasoning is extraordinarily difficult to do
off the rip. Hence, this is where some analogies come into play. For
this one in particular, it should not be interpreted as a literal
description of electron motion.



Solving the Telegrapher equations simultaneously gives you the
voltage and current wave equations. Now, instead of electric and
magnetic field wave equations which were covered in Chapter 1,
these equations describe how voltage and current propagate as

waves along a transmission line.

Let’s simultaneously solve these equations to achieve the voltage and
current wave equation. First, begin with the voltage equation and
partially differentiate with respect to z.

d‘ifiZ)L(RﬂwL) I(z)
d’v(z) , di(z)
=-(R+
i (Rrjel) —
. . dl(z)
Going back to the current equation, we actually know what a7

is equal to. Let’s plug the current equation into the now 2nd order
differential equation for voltage. This is what it means to
simultaneously solve these equations. You use one equation to solve
for the other - very standard practice for deriving equations such as
these.

dId(ZZ):_(G”wC) V(z)
dzc;/Z(zz):'(RJrij) dId(ZZ)
dz;(j):-(RﬂwL) [(-(G+jwC) V(z))]

=(R+joL)(G+jwC) V(z)




Similar to our electric field equation where permittivity and
permeability define the propagation constant, so does a lossy
transmission line with delta resistance, inductance, capacitance, and

conductance.

y'=(R+jwL)(G+jwC)
y=V(R+jwL)(G+jwC)

Very similar to when we solved for the propagation constant in
Chapter 1 and plugged back into the equation.

dzj(fL(waL)(GﬂwC) viz)
LY vin)o

This should look VERY familiar if you have been following the
derivations closely. This is another second-order differential
equation! This equation specifically is the second order differential
equation for a lossy transmission line.

Now, let’s solve for the current wave equation using similar steps to
solve the voltage wave equation. First, start with the current
equation derived from KCL on the lumped transmission line circuit
model and differentiate both sides with respect to z.

Me) G+ joc) viz)



Once again, we know what z is equal to, so let’s plug that back

into the above equation to simplify further.

d’I(z)
dz’
dv(z)

dz

dv(z)
dz

=-(G+jwC)

=-(R+jwlL) I(z)

z =-(G+jwC)[(-(R+jwL) I(z))]

d’1(z)
dz’

=(R+joL)(G+joC) I(z)

Since we have already established what the propagation constant is,
let’s substitute the constant again to find the current wave equation
for a transmission line.

dzdlz(f)=(R+ij)(G+JwC> I(z)
ddfiﬂy 1(2)
dzjz(zz)_yz 1(2)=0

After derivation, the voltage and current equations are given as:

d V(ZZ)- V2 V(z)=0 (2.1.03)
dz
d I(Z>-y2 I(z)=0 (2.1.04)

dz’



If you’ve been paying attention so far, the general equations should
seem obvious. Very similar to the general solution of the plane wave
electric field wave equation, the general solution of the voltage and

current wave equations follows suit in the following manner:

V(z)=V, e +V e (2.1.05)
I(z)=1,e""+I e™" (2.1.06)

The first equation represents a voltage wave traveling in both
directions (-z and +z). The first term, V,"e”"*, represents the
voltage wave traveling in the positive z-direction (a forward voltage

Y

traveling wave) and the second term, V "e""*, represents the voltage

wave traveling in the negative z-direction (a reverse voltage traveling
wave). Since this overall voltage wave is propagating on a lossy
transmission line, the forward and reverse voltage waves will decay
as they propagate due to the attenuation constant, az. Remember,
for lossy media including transmission lines, the propagation
constant is not purely real.

Unless you’re extraordinarily gifted at visualizing the obscure
phenomena of wave propagation (in this case, voltage and current),
it might be helpful describing these general solutions with intuitive
examples as we’ve been doing so far. Hopefully, most people can
relate to doing this when they were a kid - either with a rope, a
chain, or a piece of string,

Imagine you’re at a beach with a ten foot rope tied to a post and you
give the rope a singular snap. This snap can be thought of as the
source of the signal. As the rope “wave” travels to the post, the
crest (amplitude) gets smaller. This forward traveling wave to the
post represents V “e'* - a forward traveling voltage wave.
Attenuation, which is part of the complex propagation constant, y,
causes the wave to become smaller as it approaches the post if the



rope has friction. Now, as soon as that rope “wave” hits the post, it
will reflect off the post, come back, and will also get smaller as it
travels back towards your hand. This reflected traveling rope wave

"* and similar to the forward traveling rope

represents Ve’
“wave”, attenuation causes the amplitude/crest of the wave to

decay.

Once again, make note that the propagation constant, v, is utilized
instead of B (or k for lossless transmission lines). This is because the
complex propagation constant is defined as y in lossy mediums (as
mentioned before with plane waves and guided waves).

We have so far defined the traveling wave equations of Fig, b) by
incorporating the resistance, inductance, conductance, and
capacitance of the lumped model. The traveling wave solutions to
these equations can be written as:

Notice the close similarity between these sets of general solutions
for propagation:

Voltage and Current Traveling Wave:

Electric Field Traveling Plane Wave
E(z)=E, e""+E, e™

Noticing the stark similarities between these two sets of equations is
extremely important, because this is essentially the beginning of
merging field theory and circuit theory for radio frequencies. For the
voltage and current traveling waves, the propagation constant v is



complex due to the lossy nature of the medium. Instead of an
electric field plane wave propagating in the z-directions, we have
voltage and current waves propagating in the z-directions. The
voltage and current traveling waves include inductance, resistance,
capacitance, and conductance

components which are defined by the complex propagation

constant V-

While Maxwell’s equations give rise to electric and magnetic field
plane waves propagating in the z-direction, an analogous concept in
circuit theory emerges: voltage and current waves propagating along
the same direction. As denoted before, we can deduce that the ¢
term represents the traveling wave propagating in the forward +z
direction and the e term represents the traveling wave
propagating in the opposite -z direction for both the voltage and

current waves.

The reader might be thinking, “Okay, we have voltage, we have
current, what about impedance in terms of these waves?” This leads
us to one of the most fundamental concepts in RF engineering and
design: characteristic impedance. It is defined as the ratio of the
amplitude of the voltage wave to the amplitude of the current wave
on a transmission line. In practice, this is often treated as a real
constant-typically 50€2 - because the losses are assumed to be
minimal, making the imaginary components negligible.

To better describe characteristic impedance, let’s go back to the
intuitive example with water flowing in a pipe. Now, let’s grab a
piston and put it on one end of the pipe and give it a singular pump.
As mentioned before:

Voltage is “like pressure”



Current is like “water flow”. Not in the sense where electrons move
from point A to point B, but in the sense the flow s associated with

a traveling pressure wave.

Characteristic impedance = how much pressure (voltage) is needed
to get a certain flow rate (current) for a traveling wave in a uniform

pipe.

Suppose the pipe goes on forever and is completely uniform on the
inside. When you push the piston, the pressure wave travels down
the pipe and the water flows. The relationship between how hard
you have to push (pressure = voltage) and the amplitude of the flow
associated with the traveling pressure wave (flow = current) depends
only on the pipe’s properties - its diameter, stiffness, and the
viscosity of the water.

To be more technical for my RF Engineering readers out there:
Voltage is the electric potential difference between conductors

Current is the motion of charge in the conductors that accompanies a

propagating electromagnetic wave.

The characteristic impedance is the pressure-to-flow ratio of a

traveling wave in a uniform line.

Consider this: imagine your goal is to get all the water to propagate
smoothly to one end of a pipe. Sounds simple enough. If the pipe is
uniform, the water flows without issue.

But now imagine that near the end, the pipe narrows or you partially
close it off. What happens? Some of the water still flows through,
but part of the wave reflects and comes back toward the source.
This reflected wave disrupts the steady movement of water and
causes interference or turbulence in the pipe.



This is exactly what happens in an electrical transmission line when
the impedance changes at the load. A mismatch causes part of the
voltage and current wave to reflect, which interferes with the
forward wave - just like the backward flow of water in the pipe.



