
What is Electromagnetism?

Let’s first ask ourselves a fundamental question, “What is 
Electromagnetism?”

In physics, there are four fundamental laws of  nature that govern all 
physical phenomena in the universe and electromagnetism is one of  
these four forces. Those four physical phenomena are:

Gravitational Force (Gravity) - Pulls masses together including 
planets, stars, and black holes. Also governs orbiting bodies, 
expanding the universe, and falling apples.

Strong Nuclear Force (Atoms) - Binds protons and neutrons in the 
atomic nucleus.

Weak Nuclear Force (Electrons) - Responsible for radioactive decay 
and allows particles to change types. Essential for nuclear fusion.

Electromagnetic Force (Fields) - Acts on charged particles; 
responsible for electricity, magnetism, and light

At its core, electromagnetism describes how electrically charged 
particles interact with each other as well as electric and magnetic 
fields. It’s a force. It’s not a very strong force physically, but it's the 
cornerstone of  how we communicate over the phone, how we are 
able to peer into the universe to see galaxies and stars, how your 
computer works, it’s used in MRI’s for verifying cancerous tumors, 
and how your debit card works. Needless to say, RF is used 
everywhere, all the time, all day, every day.

I mentioned the word field, so what exactly is a field? A field is a 
physical quantity that has a value at every point in space and time (or 
a value and a direction - a vector). To picture a field in everyday life, 



imagine a massive room at roughly 77 degrees Fahrenheit. I can 
walk to the corner of  this room and it might be 75 degrees and I 
can walk to the other corner at the end of  the room and it might be 
around 78 degrees. At every point in this space and time, there is a 
specific temperature point/value. Electromagnetism, like heat, is a 
field - each with its own physical “value” at each point in space and 
time where the field exists.

Translating this to electromagnetism, an electric field shows the 
force that would act on a positive charge at any point in space and 
time. A magnetic field on the other hand, describes how magnetic 
forces are distributed in space. An electromagnetic field combines 
electric and magnetic fields into one unified field. 

The Goal for Electromagnetic Theory in RF

The goal, specifically for electromagnetism in RF Engineering, is to 
show that electric and magnetic field lines can travel as waves 
through space. It’s been established that it’s a force, but can this 
force travel over distance? These questions lay the foundation for 
energy propagation (travel) for all wavelengths on the 
electromagnetic spectrum (light, radio waves, X-Rays and 
microwaves). The mathematical description of  electric and magnetic 
field lines propagating through space is called the wave equation. 
From the wave equation, it is possible to derive the simplest type of  
electric/magnetic wave propagating through free space - a plane 
wave.

Why is all this important? Plane waves are a simplified, but powerful 
building block for understanding how electromagnetic waves behave 
in bounded structure media, like waveguides or transmission lines 
(ways of  guiding electromagnetic waves through a structure). Think 
of  plane waves as the most fundamental electromagnetic wave 



found in nature - very useful for understanding wave propagation 
without complicating the phenomenon right out the gate.

Guided waves on the other hand are similar, but instead give a 
superposition of  plane waves and can be formally expressed as 
combinations of  many plane waves reflecting off  the guide 
boundaries at specific angles. What is superposition? In terms of  
plane waves, superposition is the idea that when two or more plane 
waves overlap, their combined effect is simply the sum of  their 
individual amplitudes at any point. To illustrate, imagine you’re on a 
lake enjoying the beautiful weather and two boats drive by each 
other in opposite directions. Both of  the boats will produce their 
own individual waves. Once the waves from each boat reach each 
other, they will combine to create a singular wave - the sum of  the 
waves from the first and second boat. Sometimes a big splash if  the 
peaks line up, or a calmer patch if  they cancel out. In the real world, 
there are tons of  plane waves interacting with each other 
simultaneously. The easiest way to accurately describe these 
interactions is with superposition.

This superposition provides a mode composition of  complex field 
distributions such as Transverse Electric (TE), Transverse Magnetic 
(TM), or Transverse Electromagnetic (TEM) waves. This is 
particularly important because in most transmission lines, the 
dominant mode of  wave propagation is TEM - meaning a TEM 
wave is a uniform plane wave confined between two conductors 
under the ideal TEM/quasi-static approximation. More specifically, 
the voltage and current on a transmission line are directly related to 
the electric and magnetic fields of  the TEM wave. This is crucial, 
because voltage and current wave propagation can be simplified into 
a circuit model - giving way to topics such as impedance and 
reflection on a transmitted voltage/current wave on a transmission 
line.



The reason why we can design and simplify using circuit models is 
because of  electromagnetic wave propagation. Before we can 
do anything, we need to start with Maxwell’s Equations and make 
six underlying assumptions to mathematically prove these waves can 
propagate. Only then, we can start understanding circuit models  
and really harness the power of  radio frequency circuits.

Now that we’ve built some intuition for what RF waves look like 
and why frequency even matters, it’s time to peel back the curtain on 
the real backbone of  electromagnetics. Every RF phenomenon 
you’ll every see - from antennas radiating to microstrip launching 
modes to a simple trace on a PCB carrying a GHz signal - comes 
from four equations.

Yep. Four.

If  you want to understand RF at a level that actually lets you 
troubleshoot confidently, you need to at least see where these 
equations lead. We’re going to step into the math, but I’ll walk 
through it in a way that connects each step back to something 
physical and intuitive.

Before we jump into Maxwell’s equations and the mathematics 
behind electromagnetic fields, there are four vector calculus tools 
that appear frequently in electromagnetics. They look intimidating at 
first, but each one has a simple physical meaning. You don’t need to 
hold a degree in mathematics to understand them - you only need 
intuition.

Divergence - (∇ ⋅E and ∇ ⋅B)

Divergence tells you whether a field is spreading out or converging 

at a point. For the electric field, ∇ ⋅E=
ρ
ϵ o

, simply means charge is 



the source of  the electric field lines. Positive charges push the lines 
outward and negative charges pull them inwards. For magnetic 

fields, ∇ ⋅B=0, is nature’s way of  saying magnetic field lines 
never begin or end - they always loop. No magnetic monopoles 
exist.

Curl - (∇ ×E and ∇ ×B)

Curl measures how much a field wants to swirl or circulate around a 

point. Faraday’s Law, ∇ ×E=-
∂B
∂ t

, tells you that a changing 

magnetic field generates a curling electric field. Ampere - Maxwell’s 

Law, ∇ ×B= μ0  J  + μ0 ϵ 0
∂ E
∂ t

, says currents and changing electric 

fields create a curling magnetic field. This back and forth “twisting” 
behavior is what makes electromagnetic waves self-sustaining: a 
changing electric field curls up a magnetic field and a changing 
magnetic field curls up an electric field

Laplacian - (∇ 2E  ,∇ 2B  )

The Laplacian (∇ 2E  ,∇ 2B  ) compares a field at one point to the 
field around it - it measures curvature. Where the field bends or 
differs from its surroundings, the Laplacian captures that spatial 
variation. When combined with the time derivatives in Maxwell’s 
equations, it forms the wave equation, showing how the electric and 
magnetic fields propagate and smooth themselves out through 
space.
The Del Operator - (∇ )

The del operator is the spatial derivative toolbox behind every form 
of  Maxwell’s equations. Apply ∇ ⋅  and you get divergence 
(sources). Apply ∇ × and you get the curl (circulation). Combine 
∇  with itself  (∇ 2) and you get curvature and the wave equation. 



Everything in electromagnetic field behavior is encoded in how ∇  
interacts with E, H, ρ, and J.

1.1 Maxwell’s Equations

Maxwell initially developed 12 equations to explain electromagnetic 
fields and waves, but was later simplified to four thanks to Heaviside 
(another shoutout to Oliver). These equations can be utilized in its 
differential and integral form.

Equation 1. Gauss’s Law for Electricity

    ∇ ⋅E=
ρ
ϵ o

(1.1.01)

Equation 2. Gauss’s Law for Magnetism

                ∇ ⋅B=0         (1.1.02)

Equation 3. Faraday’s Law of  Induction

                ∇ ×E=-
∂B
∂ t

                           (1.1.03)

Equation 4. Ampere’s Law with Maxwell’s Addition

               ∇ ×B= μ0  J  + μ0 ϵ 0
∂ E
∂ t

     (1.1.04)

So, what are these four equations? What do they describe? We know 
it describes something over a region of  space and time, but what 
exactly?

Gauss’s Law for Electricity - Sources Create Fields



Gauss’s Law for Electricity states that electric field lines diverge 
from electric charges and the divergence of  the electric field E at a 
point is proportional to the charge density at that point. Positive 
charges are sources of  electric fields and negative charges are 
considered “sinks”.

∇ ⋅E=
ρ
ϵ o

Electric field lines are invisible “forces” that come out of  electric 
charges - whether that be a positive or a negative charge. A positive 
charge can be thought of  as a sun - positive charges push electric 
field lines outward. Negative charges can be thought of  as 
whirlpools in a body of  water - they pull electric field lines inward. 
Gauss’s Law for Electricity measures how much charge is inside of  a 
closed space by looking at the electric field lines passing through the 
surface around it. It tells how much charge is inside of  a closed 
space by measuring how much of  the electric field is flowing 
through the closed space.

Positive and Negative Charges 



Gauss’s Law for Magnetism (No Magnetic Charges Exist)

Gauss’s Law for Magnetism states there are no magnetic monopoles. 
Magnetic field lines are always closed loops. The divergence being 
zero means there’s no net ‘magnetic charge’ anywhere.

∇ ⋅B=0

Electric fields can start or end on electric charges whether that’s 
positive or negative. Magnetic fields can’t. Magnetic field lines make 
loops - there is no stop or end unlike electric field lines.

Magnetic Field Lines

Essentially, there’s no such thing as a magnetic charge (magnetic 
monopole). Very similar to a sphere, there’s no “start” or “end”.

In other words, you can’t have a north pole without a south pole. 
Just try cutting a magnet in half. You will get two smaller magnets 
each with its own north and south pole. So, if  the magnetic field 
lines are always a loop with no start or finish, the net magnetic field 
going into the bubble vs out of  the bubble is zero. Magnetic lines 
do not start or stop - they just loop around.

Faraday’s Law of  Induction (Changing Magnetic Fields 
Create Electric Fields)



The curl of  the electric field, E, describes how the electric field 
‘loops’ around, and this curling is caused by the time rate of  change 

of  the magnetic field, 
∂B
∂ t

 . This is the basis of  how generators and 

transformers work. A changing magnetic field creates a looping 
electric field. If  a magnetic field changes over time, it induces an 
electric field that forms a loop - it doesn’t just point outward like 
from a charge. This means the electric fields can curl even when 
there are no electric charges around - but only if  the magnetic field 
is changing.

∇ ×E=-
∂B
∂ t

 

To simplify further, if  the magnetic field is changing in any form, 
the magnetic field will twist up an electric field around it - sort of  
like stirring up a whirlpool in water.

Ampere’s Law (with Maxwell’s Addition) - Currents and 
Changing Electric Fields Create Magnetic Fields

A magnetic field curls around electric currents (denoted as J) and 
also around changing electric fields (Maxwell’s addition). The first 
term is the original Ampere’s law, μ0  J ,  where current generates 

magnetic fields. The second term, μ0 ϵ 0
∂ E
∂ t

, accounts for 

displacement current, which is necessary to preserve continuity in 
situations like charging a capacitor - a changing electric field also 
creates magnetic fields.

∇ ×B= μ0  J  + μ0 ϵ 0
∂ E
∂ t



Let’s combine all four of  these laws and make a couple of  
assumptions to achieve our goal - deriving electromagnetic wave 
propagation in free space.

To get something clean out of  Maxwell’s equations - something we 
can actually solve - we need to simplify the physical world just a bit. 
Not because the real world is simple, but because peeling back the 
complexity lets us see the underlying structure. These six 
assumptions aren’t random. They’re the mathematical “setup” that 
makes it possible to derive the most fundamental type of  
electromagnetic wave: the plane wave.

The Six Assumptions

To mathematically prove electromagnetic fields can travel through 
space, six assumptions need to be made. Think of  them as initial 
conditions to prove these waves can propagate through space.

1. The permittivity, ϵ , is isotropic (does not vary in space)
2. There is no free movable charge.
3. The permeability, μ, is isotropic (does not vary in space)
4. The material is not conductive
5. The time harmonic variation of  the electric field is sinusoidal
6. The wave changes sinusoidally in the z direction and has a 
constant value everywhere in x and y direction

Let’s break down each of  these assumptions further.

Assumption 1 - The permittivity, ϵ , is isotropic (does not vary in space)

Permittivity is constant everywhere. It does not change or vary from 
one point to another.



Permittivity is a measure of  how well electric field energy can be 
stored in a confined area. Higher permittivity means more electric 
field energy can be stored in a confined space and a lower 
permittivity means less electric field energy can be stored in a 
confined space. In this assumption, every point in space can hold 
the same amount of  electric field energy.

Assumption 2 - There is no free movable charge (No free charge density)

There are no charges moving around (positive or negative). No 
sources of  charge density exist. No suns or whirlpools.

Assumption 3 - The permeability, μ, is isotropic (does not vary in space)

Permeability does not change or vary from one point to another. 
Unlike permittivity, permeability is a measure of  how well magnetic 
field energy can be stored in a confined area. Higher permeability 
means more magnetic field energy can be stored in a confined area 
and less permeability means not as much magnetic field energy can 
be stored in a confined area. 

Assumption 4 -  The material is not conductive

This assumption states that the medium the wave is traveling in does 
not conduct electricity. No charge (positive or negative) can travel 
from one point to another via electromotive forces.

Assumption 5 - The time harmonic variation of  the electric field is sinusoidal

A time harmonic sinusoidal field states that the field varies 
sinusoidally with time at a single angular frequency. If  you’re 
standing at a fixed point in space and watching the electric field, it 
will oscillate sinusoidally over time - meaning the field is vibrating 



back and forth much like a wave on a guitar string. In this case, the 
magnitude and direction of  the electric field is oscillating.

Assumption 6 - The wave changes sinusoidally in the z direction and has a 
constant value everywhere in x and y direction

This assumption is really two in one. The first part of  this 
assumption states the wave changes sinusoidally in the z-direction. 
This sinusoidal change describes a traveling wave moving in the 
positive or negative z direction. The second part of  this assumption 
states the wave has a constant value everywhere in the x and y 
direction. This implies planar wavefronts that are perpendicular to 
the direction of  propagation. This means all points in a given x-y 
plane “feel” the same field strength and phase at a given moment in 
time.

Think of  this wave as multiple sheets of  paper standing upright and 
moving in a singular direction - a plane if  you will. In free space (a 
vacuum) EM waves naturally form plane wave solutions.

After assuming time-harmonic sinusoidal conditions (like the one 
pictured above), these signals can be analyzed at a specific angular 
frequency as mentioned before.

Deriving the Wave Equation/Helmholtz Solution for the 
Electric Field

Let’s simplify Maxwell’s Equations using what we know so far from 
the six assumptions.

Assumption 1: Since the permittivity is a scalar constant and 
isotropic, ϵ , can be moved outside derivatives.



Assumption 2: Since there are no free movable charges, ρ=0. This 
means we can simplify Gauss’s Law for Electricity. There’s no 
charges moving through the bubble, so the net electric field moving 
through this space is zero.

∇ ⋅E=
ρ
ϵ 0

∇ ⋅E=0

Assumption 3: Since the permeability is a scalar constant and 
isotropic, μ, can be moved outside derivatives.

Assumption 4: The medium is non conductive. This means J =0. If  
the medium does not conduct electricity, there’s no conduction 
current. This means we can simplify Ampere’s Law (with Maxwell’s 
Addition).

∇ ×B= μ0  J  + μ0 ϵ 0
∂ E
∂ t

∇ ×B= μ0 ϵ 0
∂ E
∂ t

Rewriting the Equations Applying Assumptions 1 - 4:

1. Gauss’s Law for Electricity

∇ ⋅E=0

2. Gauss’s Law for Magnetism

∇ ⋅B=0

3. Faraday’s Law of  Induction



∇ ×E=-
∂B
∂ t

4. Ampere’s Law (no currents)

∇ ×B= μ0 ϵ 0
∂ E
∂ t

Now that we have stated our initial conditions and have simplified 
the equations as much as possible. Let’s mathematically prove 
electromagnetic waves can travel through space and time.

Step 1: Take the curl of  Faraday’s Law:

∇ ×E=-
∂B
∂ t

∇ ×(∇ ×E )=-( ∂B
∂ t
×∇ )

∇ ×(∇ ×E )=-
∂
∂ t

(∇ ×B )

Step 2: Substitute Ampere’s Law into the above equation:

∇ ×B= μ0 ϵ 0
∂ E
∂ t

∇ ×(∇ ×E )=-
∂
∂ t

(∇ ×B )

∇ ×(∇ ×E )=-
∂
∂ t

( μ0 ϵ 0
∂ E
∂ t

)

Step 3: Extract the permittivity and permeability scalar constants 
and combine partial derivatives.



∇ ×(∇ ×E )=-
∂
∂ t

( μ0 ϵ 0
∂ E
∂ t

)

∇ ×(∇ ×E )=- μ0 ϵ 0
∂2E

∂t2

What we’re doing here may look like a lot of  vector calculus, but 
there’s a payoff  coming. Every step is stripping away what we don’t 
need so that we can reveal the simplest, cleanest form of  an 
electromagnetic wave. If  Maxwell’s equations are the full engine, the 
Helmholtz equation is the “pure note” that comes out of  it - the 
part that tells us how waves actually move through space.


